Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Prenat Diagn ; 44(4): 511-518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38353311

RESUMEN

OBJECTIVE: Significant discrepancy exists between laboratories in classification and reporting of copy number variants (CNVs). Studies exploring factors affecting prenatal CNV management are rare. Our "virtual fetus" pilot study examines these factors. METHOD: Ten prenatally diagnosed CNVs of uncertain significance (VUS) > 1Mb, encompassing OMIM-morbid genes, inherited from healthy parents, were classified by 15 MD geneticists from laboratory, prenatal, and preimplantation genetic testing (PGT) units. Geneticists addressed factors affecting classification, obligation to report, and recommendation for invasive testing or PGT. RESULTS: CNVs were classified likely benign (10.7%), VUS (74.7%), likely pathogenic (8.7%), or pathogenic (6.0%). Classification discrepancy was higher for losses versus gains. Classifying pathogenic/likely pathogenic was more common for losses (adjusted odds ratio [aOR] 10.9, 95% CI 1.55-76.9), and geneticists specializing in gynecology (aOR 4.9, 95% CI 1.03-23.3). 84.0% of respondents would report CNVs, depending on classification and family phenotype. Invasive testing in pregnancies was recommended for 29.3% of CNVs, depending on the classification and geneticist's specialization. PGT was recommended for 32.4%, depending on classification, experience years, and family's phenotype (38.0% for patients undergoing in vitro fertilization irrespectively, 26.7% otherwise). CONCLUSION: Factors affecting CNV classification/reporting are mainly dosage, family phenotype, geneticist specialization and experience. Understanding factors from our pilot study may facilitate developing an algorithm for clinical consensus and optimal management.


Asunto(s)
Variaciones en el Número de Copia de ADN , Feto , Femenino , Embarazo , Humanos , Proyectos Piloto , Análisis por Micromatrices , Fenotipo
2.
Kidney Int Rep ; 8(11): 2439-2457, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38025229

RESUMEN

Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause of chronic kidney disease (CKD) and the need for kidney replacement therapy (KRT) in children. Although more than 60 genes are known to cause CAKUT if mutated, genetic etiology is detected, on average, in only 16% of unselected CAKUT cases, making genetic testing unproductive. Methods: Whole exome sequencing (WES) was performed in 100 patients with CAKUT diagnosed in the first 1000 days of life with CKD stages 1 to 5D/T. Variants in 58 established CAKUT-associated genes were extracted, classified according to the American College of Medical Genetics and Genomics guidelines, and their translational value was assessed. Results: In 25% of these mostly sporadic patients with CAKUT, a rare likely pathogenic or pathogenic variant was identified in 1 or 2 of 15 CAKUT-associated genes, including GATA3, HNF1B, LIFR, PAX2, SALL1, and TBC1D1. Of the 27 variants detected, 52% were loss-of-function and 18.5% de novo variants. The diagnostic yield was significantly higher in patients requiring KRT before 3 years of age (43%, odds ratio 2.95) and in patients with extrarenal features (41%, odds ratio 3.5) compared with patients lacking these criteria. Considering that all affected genes were previously associated with extrarenal complications, including treatable conditions, such as diabetes, hyperuricemia, hypomagnesemia, and hypoparathyroidism, the genetic diagnosis allowed preventive measures and/or early treatment in 25% of patients. Conclusion: WES offers significant advantages for the diagnosis and management of patients with CAKUT diagnosed before 3 years of age, especially in patients who require KRT or have extrarenal anomalies.

3.
J Cyst Fibros ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37980178

RESUMEN

BACKGROUND: Population genetic carrier screening (PGCS) for cystic fibrosis (CF) has been offered to couples in Israel since 1999 and was included in a fully subsidized national program in 2008. We evaluated the impact of PGCS on CF incidence, genetic and clinical features. METHODS: This was a retrospective national study. Demographic and clinical characteristics of children with CF born in Israel between 2008 and 2018 were obtained from the national CF registry and from patients' medical records. Data on CF births, preimplantation genetic testing (PGT), pregnancy termination and de-identified data from the PGCS program were collected. RESULTS: CF births per 100,000 live births decreased from 8.29 in 2008 to 0.54 in 2018 (IRR = 0.84, p < 0.001). The CF pregnancy termination rate did not change (IRR = 1, p=  0.9) while the CF-related PGT rate increased markedly (IRR = 1.33, p < 0.001). One hundred and two children were born with CF between 2008 and 2018 with a median age at diagnosis of 4.8 months, range 0-111 months. Unlike the generally high uptake nationally, 65/102 had not performed PGCS. Even if all had utilized PGCS, only 51 would have been detected by the existing genetic screening panel. Clinically, 34 % of children were pancreatic sufficient compared to 23 % before 2008 (p = 0.04). CONCLUSIONS: Since institution of a nationwide PGCS program, the birth of children with CF decreased markedly. Residual function variants and pancreatic sufficiency were more common. A broader genetic screening panel and increased PGCS utilization may further decrease the birth of children with CF.

4.
Bioanalysis ; 15(23): 1421-1437, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847061

RESUMEN

Background: A biomarker profile was evaluated longitudinally in patients with Fabry disease switched from enzyme-replacement therapy (ERT) to migalastat. Methods: 16 Gb3 isoforms and eight lyso-Gb3 analogues were analyzed in plasma and urine by LC-MS/MS at baseline and at three different time points in naive participants and participants switching from either agalsidase α or ß to migalastat. Results: 29 adult participants were recruited internationally (seven centers). The Mainz Severity Score Index and mean biomarker levels remained stable (p ≥ 0.05) over a minimum of 12 months compared with baseline following the treatment switch. Conclusion: In this cohort of patients with Fabry disease with amenable mutations, in the short term, a switch from ERT to migalastat did not have a marked effect on the average biomarker profile.


Asunto(s)
Enfermedad de Fabry , Adulto , Humanos , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/genética , Cromatografía Liquida , Espectrometría de Masas en Tándem , 1-Desoxinojirimicina/uso terapéutico , Biomarcadores
5.
Sci Rep ; 13(1): 18036, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865712

RESUMEN

Recent advances in genomic technologies expand the scope and efficiency of preimplantation genetic testing (PGT). We previously developed Haploseek, a clinically-validated, variant-agnostic comprehensive PGT solution. Haploseek is based on microarray genotyping of the embryo's parents and relatives, combined with low-pass sequencing of the embryos. Here, to increase throughput and versatility, we aimed to develop a sequencing-only implementation of Haploseek. Accordingly, we developed SHaploseek, a universal PGT method to determine genome-wide haplotypes of each embryo based on low-pass (≤ 5x) sequencing of the parents and relative(s) along with ultra-low-pass (0.2-0.4x) sequencing of the embryos. We used SHaploseek to analyze five single lymphoblast cells and 31 embryos. We validated the genome-wide haplotype predictions against either bulk DNA, Haploseek, or, at focal genomic sites, PCR-based PGT results. SHaploseek achieved > 99% concordance with bulk DNA in two families from which single cells were derived from grown-up children. In embryos from 12 PGT families, all of SHaploseek's focal site haplotype predictions were concordant with clinical PCR-based PGT results. Genome-wide, there was > 99% median concordance between Haploseek and SHaploseek's haplotype predictions. Concordance remained high at all assayed sequencing depths ≥ 2x, as well as with only 1ng of parental DNA input. In subtelomeric regions, significantly more haplotype predictions were high-confidence in SHaploseek compared to Haploseek. In summary, SHaploseek constitutes a single-platform, accurate, and cost-effective comprehensive PGT solution.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Niño , Humanos , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Haplotipos , Embrión de Mamíferos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN , Aneuploidia , Blastocisto
6.
J Endocr Soc ; 7(7): bvad086, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37362385

RESUMEN

Context: Various genes have been associated with familial and sporadic primary hyperparathyroidism (PHPT), including activating mutations of the glial cells missing transcription factor 2 (GCM2) gene. Objective: The aim of this study was to assess the prevalence of the GCM2 p.Tyr394Ser variant in the Jerusalem Ashkenazi Jewish (AJ) population with PHPT, and to conclude whether routine genetic testing is justified. Methods: The blood of 40 self-reported AJ patients with PHPT and 200 AJ controls was tested for the GCM2 p.Tyr394Ser variant. Demographic and medical information was extracted from the patients' charts and evaluated accordingly. Results: Two (5%) PHPT patients and 3 (1.5%) controls were heterozygotes for the tested variant. Our patients were mostly (87.5%) sporadic cases. One of the heterozygote patients had familial PHPT; the other had 2 parathyroid adenomas, and the levels of his blood and urinary calcium were extremely high. Conclusion: Our results suggest that in AJ patients with sporadic, single-gland PHPT, the likelihood of the tested variant is low and genetic testing should be limited to those with familial PHPT or multiglandular disease.

7.
Mol Genet Metab ; 137(1-2): 49-61, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35926321

RESUMEN

Fabry disease is an X-linked inherited lysosomal disorder that causes accumulation of glycosphingolipids in body fluids and tissues, leading to progressive organ damage and reduced life expectancy. It can affect both males and females and can be classified into classic or later-onset phenotypes. In classic Fabry disease, α-galactosidase A (α-Gal A) activity is absent or severely reduced and disease manifestations have an early onset that can affect multiple organs. In contrast, in later-onset Fabry disease, patients have residual α-Gal A activity and clinical features are primarily confined to the heart. Individualized therapeutic goals in Fabry disease are required due to varying phenotypes and patient characteristics, and the wide spectrum of disease severity. An international group of expert physicians convened to discuss and develop practical clinical recommendations for disease- and organ-specific therapeutic goals in Fabry disease, based on expert consensus and evidence identified through a structured literature review. Biomarkers reflecting involvement of various organs in adult patients with classic Fabry disease are discussed and consensus recommendations for disease- and organ-specific therapeutic goals are provided. These consensus recommendations should support the establishment of individualized approaches to the management of patients with classic Fabry disease by considering identification, diagnosis, and initiation of disease-specific therapies before significant organ involvement, as well as routine monitoring, to reduce morbidity, optimize patient care, and improve patient health-related quality of life.


Asunto(s)
Enfermedad de Fabry , Masculino , Femenino , Humanos , Enfermedad de Fabry/diagnóstico , Enfermedad de Fabry/genética , Enfermedad de Fabry/terapia , alfa-Galactosidasa/genética , alfa-Galactosidasa/uso terapéutico , Terapia de Reemplazo Enzimático , Consenso , Calidad de Vida , Glicoesfingolípidos , Biomarcadores
8.
Am J Med Genet A ; 188(5): 1420-1425, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35075769

RESUMEN

Variants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay. A heterozygous frameshift variant c.1112dup (p.Pro372Serfs*14) in TBX4 was identified in patients with mild interstitial lung disease (1), bronchiolitis obliterans (1), recurrent pneumothorax (1), ICPPS/SPS (1), LLDD (2), and in unaffected individuals (4). In two deceased neonates with LLDD, we identified a noncoding SNV rs62069651-C located in trans to the mutated TBX4 allele that reduced the TBX4 promoter activity by 63% in the reporter assay. Our findings provide a functional evidence for the recently reported model of complex compound inheritance in which both TBX4 coding and in trans noncoding hypomorphic variants in the lung-specific enhancer of TBX4 contribute to LLDD.


Asunto(s)
Enfermedades Pulmonares , Anomalías del Sistema Respiratorio , Enfermedades del Desarrollo Óseo , Cadera/anomalías , Humanos , Recién Nacido , Isquion/anomalías , Pulmón/anomalías , Enfermedades Pulmonares/genética , Rótula/anomalías , Proteínas de Dominio T Box/genética
9.
Eur J Hum Genet ; 30(8): 980-983, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34776509

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal dominant muscular dystrophy that results from a CTG expansion (50-4000 copies) in the 3' UTR of the DMPK gene. The disease is classified into four or five somewhat overlapping forms, which incompletely correlate with expansion size in somatic cells of patients. With rare exception, it is affected mothers who transmit the congenital (CDM1) and most severe form of the disease. Why CDM1 is hardly ever transmitted by fathers remains unknown. One model to explain the almost exclusive transmission of CDM1 by affected mothers suggests a selection against hypermethylated large expansions in the germline of male patients. By assessing DNA methylation upstream to the CTG expansion in motile sperm cells of four DM1 patients, together with availability of human embryonic stem cell (hESCs) lines with paternally inherited hypermethylated expansions, we exclude the possibility that DMPK hypermethylation leads to selection against viable sperm cells (as indicated by motility) in DM1 patients.


Asunto(s)
Metilación de ADN , Distrofia Miotónica , Proteína Quinasa de Distrofia Miotónica , Humanos , Masculino , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Semen , Espermatozoides , Expansión de Repetición de Trinucleótido
10.
Sci Rep ; 11(1): 22372, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34785703

RESUMEN

More than 900 variants have been described in the GLA gene. Some intronic variants and copy number variants in GLA can cause Fabry disease but will not be detected by classical Sanger sequence. We aimed to design and validate a method for sequencing the GLA gene using long-read Oxford Nanopore sequencing technology. Twelve Fabry patients were blindly analyzed, both by conventional Sanger sequence and by long-read sequencing of a 13 kb PCR amplicon. We used minimap2 to align the long-read data and Nanopolish and Sniffles to call variants. All the variants detected by Sanger (including a deep intronic variant) were also detected by long-read sequencing. One patient had a deletion that was not detected by Sanger sequencing but was detected by the new technology. Our long-read sequencing-based method was able to detect missense variants and an exonic deletion, with the added advantage of intronic analysis. It can be used as an efficient and cost-effective tool for screening and diagnosing Fabry disease.


Asunto(s)
Secuencia de Bases , Enfermedad de Fabry/genética , Mutación Missense , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia , alfa-Galactosidasa/genética , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad
11.
Mol Genet Genomic Med ; 9(5): e1666, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33835733

RESUMEN

BACKGROUND: Family genetic testing of patients newly diagnosed with a rare genetic disease can improve early diagnosis of family members, allowing patients to receive disease-specific therapies when available. Fabry disease, an X-linked lysosomal storage disorder caused by pathogenic variants in GLA, can lead to end-stage renal disease, cardiac arrhythmias, and stroke. Diagnostic delays are common due to the rarity of the disease and non-specificity of early symptoms. Newborn screening and screening of at-risk populations, (e.g., patients with hypertrophic cardiomyopathy or undiagnosed nephropathies) can identify individuals with Fabry disease. Subsequent cascade genotyping of family members may disclose a greater number of affected individuals, often at younger age than they would have been diagnosed otherwise. METHODS: We conducted a literature search to identify all published data on family genetic testing for Fabry disease, and discussed these data, experts' own experiences with family genetic testing, and the barriers to this type of screening that are present in their respective countries. RESULTS: There are potential barriers that make implementation of family genetic testing challenging in some countries. These include associated costs and low awareness of its importance, and cultural and societal issues. Regionally, there are barriers associated with population educational levels, national geography and infrastructures, and a lack of medical geneticists. CONCLUSION: In this review, the worldwide experience of an international group of experts of Fabry disease highlights the issues faced in the family genetic testing of patients affected with rare genetic diseases.


Asunto(s)
Enfermedad de Fabry/genética , Pruebas Genéticas/métodos , Enfermedad de Fabry/diagnóstico , Pruebas Genéticas/normas , Humanos , Linaje
12.
Genet Med ; 23(7): 1334-1340, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33772222

RESUMEN

PURPOSE: We previously developed Haploseek, a method for comprehensive preimplantation genetic testing (PGT). However, some key features were missing, and the method has not yet been systematically validated. METHODS: We extended Haploseek to incorporate DNA from embryo grandparents and to allow testing of variants on chromosome X or in regions where parents share common haplotypes. We then validated Haploseek on 151 embryo biopsies from 27 clinical PGT cases. We sequenced all biopsies to low coverage (0.2×), and performed single-nucleotide polymorphism (SNP) microarray genotyping on the embryos' parents and siblings/grandparents. We used the extended Haploseek to predict chromosome copy-number variants (CNVs) and relevant variant-flanking haplotypes in each embryo. We validated haplotype predictions for each clinical sample against polymerase chain reaction (PCR)-based PGT case results, and CNV predictions against established commercial kits. RESULTS: For each of the 151 embryo biopsies, all Haploseek-derived haplotypes and CNVs were concordant with clinical PGT results. The cases included 17 autosomal dominant, 5 autosomal recessive, and 3 X-linked monogenic disorders. In addition, we evaluated 1 Robertsonian and 2 reciprocal translocations, and 17 cases of chromosome copy-number counting were performed. CONCLUSION: Our results demonstrate that Haploseek is clinically accurate and fit for all standard clinical PGT applications.


Asunto(s)
Diagnóstico Preimplantación , Variaciones en el Número de Copia de ADN/genética , Femenino , Pruebas Genéticas , Haplotipos , Humanos , Embarazo , Translocación Genética
13.
J Assist Reprod Genet ; 38(3): 719-725, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33443723

RESUMEN

PURPOSE: To review cases of couples presented to our PGT-unit with copy number variants (CNVs) classified as variants of uncertain significance (VUS) in order to better understand their needs. METHODS: Retrospective cohort study conducted in a tertiary medical-center, 2014-2019. We reviewed files of all couples applying for genetic counseling with CNVs classified as VUS. The main outcomes measured: number of VUS findings and their description, PGT-M procedures planned and performed, IVF cycles, clinical pregnancy, and live birth rates (LBR). VUS were classified according to the American-College of Medical-Genetics and Genomics classification at time of first consultation, and updated-December 2018. RESULTS: Twenty-four couples presented with a total of 30 VUS. Twelve couples (50%) had isolated VUS and 12 (50%) had VUS diagnosed in addition to a pathogenic mutation. Initially, nine findings (30%) were defined as VUS; eight (27%) as likely benign (b-VUS); and 13 (43%) as likely pathogenic (p-VUS). PGT-M was recommended for 17/30 CNVs (56.6%), 12 (70%) of which, isolated VUS. No couple had other indications for IVF. To date, nine couples performed PGT-M for isolated VUS; LBR per-couple-55.5%. Five couples performed PGT-M for both pathogenic findings and VUS, LBR-80%. After reviewing VUS classifications, 30% remained unchanged, 20% were more severely defined, and 50% less severely defined. CONCLUSION: The genomic era enables detection of VUS whose definition is subject to change as additional information becomes available. The uncertainty of variants' clinical significance and changes in VUS definition over time complicates genetic counseling. Revised guidelines for VUS interpretation and reevaluation of patient counseling before each pregnancy must be practiced when counseling them regarding the justification of PGT-M for their diagnosed VUS.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Variaciones en el Número de Copia de ADN , Fertilización In Vitro/métodos , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Adulto , Trastornos de los Cromosomas/genética , Transferencia de Embrión , Femenino , Humanos , Masculino , Embarazo , Resultado del Embarazo , Índice de Embarazo , Estudios Retrospectivos , Adulto Joven
14.
J Assist Reprod Genet ; 37(8): 1903-1912, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32462417

RESUMEN

PURPOSE: The decision to undergo preimplantation genetic testing (PGT) entails a variety of personal and societal variables. Although PGT technology is widely accepted and used, few studies have queried the motives and concerns of PGT users; moreover, in-depth qualitative data regarding the PGT experience is scant. METHODS: In order to explore and analyze the experience, concerns, expectations, and attitudes toward the PGT technique and its implications, semi-structured interviews were conducted in a single tertiary medical center with 43 Israeli PGT users for HLA matching and autosomal dominant, autosomal recessive, and X-linked genetic disorders. RESULTS: The primary considerations in choosing PGT were prevention of birth of a child who would suffer a terminal or chronic disease as well as abrogation of a familial genetic condition. Religion played a decisive role in accepting PGT as an antenatal option. Regarding satisfaction with the PGT experience, many interviewees highlighted the need for greater attention to be given to potential stages of failure throughout the procedure and the need for emotional support. Our clinical results regarding implantation rate and cumulative live birth rate are 38-40% and 27-30%, respectively. CONCLUSION: This survey broadens understanding of the specialized needs of women, couples, and minority groups undergoing PGT and underscores the relevance of counseling services for PGT users.


Asunto(s)
Implantación del Embrión/genética , Fertilización In Vitro , Pruebas Genéticas/métodos , Diagnóstico Preimplantación , Adulto , Aneuploidia , Tasa de Natalidad , Toma de Decisiones Clínicas , Implantación del Embrión/fisiología , Transferencia de Embrión/métodos , Femenino , Humanos , Mutación/genética , Embarazo
15.
J Assist Reprod Genet ; 36(4): 727-739, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30617673

RESUMEN

PURPOSE: Pre-implantation genetic diagnosis (PGD) for molecular disorders requires the construction of parental haplotypes. Classically, haplotype resolution ("phasing") is obtained by genotyping multiple polymorphic markers in both parents and at least one additional relative. However, this process is time-consuming, and immediate family members are not always available. The recent availability of massive genomic data for many populations promises to eliminate the needs for developing family-specific assays and for recruiting additional family members. In this study, we aimed to validate population-assisted haplotype phasing for PGD. METHODS: Targeted sequencing of CFTR gene variants and ~ 1700 flanking polymorphic SNPs (± 2 Mb) was performed on 54 individuals from 12 PGD families of (a) Full Ashkenazi (FA; n = 16), (b) mixed Ashkenazi (MA; n = 23 individuals with at least one Ashkenazi and one non-Ashkenazi grandparents), or (c) non-Ashkenazi (NA; n = 15) descent. Heterozygous genotype calls in each individual were phased using various whole genome reference panels and appropriate computational models. All computationally derived haplotype predictions were benchmarked against trio-based phasing. RESULTS: Using the Ashkenazi reference panel, phasing of FA was highly accurate (99.4% ± 0.2% accuracy); phasing of MA was less accurate (95.4% ± 4.5% accuracy); and phasing of NA was predictably low (83.4% ± 6.6% accuracy). Strikingly, for founder mutation carriers, our haplotyping approach facilitated near perfect phasing accuracy (99.9% ± 0.1% and 98.2% ± 2.8% accuracy for W1282X and delF508 carriers, respectively). CONCLUSIONS: Our results demonstrate the feasibility of replacing classical haplotype phasing with population-based phasing with uncompromised accuracy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genotipo , Haplotipos/genética , Diagnóstico Preimplantación , Algoritmos , Alelos , Femenino , Efecto Fundador , Heterocigoto , Humanos , Judíos/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
16.
J Assist Reprod Genet ; 36(1): 159-164, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30402730

RESUMEN

PURPOSE: To study the outcome of repeated biopsy for pre-implantation genetic testing in case of failed genetic diagnosis in the first biopsy. METHODS: The study group included 81 cycles where embryos underwent re-biopsy because there were no transferable embryos after the first biopsy: in 55 cycles, the first procedure was polar body biopsy (PBs) and the second cleavage-stage (BB); in 26 cycles, the first was BB and the second trophectoderm (BLAST) biopsy. The control group included 77 cycles where embryos underwent successful genetic diagnosis following the first biopsy, matched by maternal age, egg number, genetic inheritance type, and embryonic stage at the first biopsy. We measured genetic diagnosis rate, clinical pregnancy rates (PRs), live-birth rates (LBRs), gestational age, and birth weight. RESULTS: For repeated biopsy, genetic diagnosis was received in 67/81 cycles (82.7%); at a higher rate in PB + BB than in BB + BLAST (49/55, 89.1% and 18/26, 69.2% respectively, p = 0.055). Transferable embryos were found in 47 and 68 cycles in the study and the control groups. PRs/ET were 20/47 (42.6%) and 36/68 (52.9%) (p = 0.27), 16/36 (44.4%) following PB + BB, and 4/11 (36.4%) following BB + BLAST (p = 0.74). LBRs/ET were 13/47 (27.7%) in study group, and 28/68 (41.2%) in the controls (p = 0.14), 10/36 (27.8%) following PB + BB group, and 3/11 (27.3%) following BB + BLAST (p > 0.99). Gestational age and birth weight were similar in all groups. CONCLUSIONS: Re-biopsy of embryos when no genetic diagnosis could be reached following the first biopsy, achieved high rates of genetic diagnosis, pregnancies, and live births.


Asunto(s)
Aneuploidia , Tasa de Natalidad , Implantación del Embrión , Fertilización In Vitro , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Adulto , Biopsia , Transferencia de Embrión , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/prevención & control , Humanos , Nacimiento Vivo , Embarazo , Índice de Embarazo , Resultado del Tratamiento
17.
Genet Med ; 21(6): 1390-1399, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30449887

RESUMEN

PURPOSE: To develop an economical, user-friendly, and accurate all-in-one next-generation sequencing (NGS)-based workflow for single-cell gene variant detection combined with comprehensive chromosome screening in a 24-hour workflow protocol. METHODS: We subjected single lymphoblast cells or blastomere/blastocyst biopsies from four different families to low coverage (0.3×-1.4×) genome sequencing. We combined copy-number variant (CNV) detection and whole-genome haplotype phase prediction via Haploseek, a novel, user-friendly analysis pipeline. We validated haplotype predictions for each sample by comparing with clinical preimplantation genetic diagnosis (PGD) case results or by single-nucleotide polymorphism (SNP) microarray analysis of bulk DNA from each respective lymphoblast culture donor. CNV predictions were validated by established commercial kits for single-cell CNV prediction. RESULTS: Haplotype phasing of the single lymphoblast/embryo biopsy sequencing data was highly concordant with relevant ground truth haplotypes in all samples/biopsies from all four families. In addition, whole-genome copy-number assessments were concordant with the results of a commercial kit. CONCLUSION: Our results demonstrate the establishment of a reliable method for all-in-one molecular and chromosomal diagnosis of single cells. Important features of the Haploseek pipeline include rapid sample processing, rapid sequencing, streamlined analysis, and user-friendly reporting, so as to expedite clinical PGD implementation.


Asunto(s)
Pruebas Genéticas/métodos , Haplotipos/genética , Diagnóstico Preimplantación/métodos , Aneuploidia , Biopsia , Blastocisto , Cromosomas , Variaciones en el Número de Copia de ADN/genética , Femenino , Fertilización In Vitro , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Embarazo
18.
Sci Rep ; 8(1): 15941, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30374031

RESUMEN

Prenatal genetic testing is not generally applicable to the very early stages of pregnancy (prior to week 8 gestation), a time period that is crucial to pregnant couples with high risk for transmission of genetic disease to their fetus. Therefore, we developed a new ultra-sensitive targeted next generation sequencing method for noninvasive haplotype-based paternal allele exclusion testing of the cystic fibrosis-associated gene, CFTR. This new method was compared to a conventional library prep and sequencing analysis method and all test results were validated by amniotic fluid testing at later stages of pregnancy. Out of 7 enrolled couples, who provided at least two blood samples (at least one week apart) for noninvasive CFTR testing, a result was obtained for 6 fetuses. Using the new hypersensitive method, all six couples (100%) received a correct diagnosis for the paternal allele as opposed to 3/6 (50%) when tested with the conventional strategy. Among 4 couples who provided just one early pregnancy blood draw for analysis, diagnosis was possible in one fetus, but only using the ultra-sensitive method. Thus, we describe a novel noninvasive CFTR screening method which demonstrates unprecedented fetal allele typing accuracy in the earliest stages of pregnancy.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Alelos , Fibrosis Quística/genética , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , Femenino , Genotipo , Edad Gestacional , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Embarazo , Análisis de Secuencia de ADN
19.
Hum Reprod ; 33(9): 1767-1776, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085138

RESUMEN

STUDY QUESTION: Does preimplantation genetic testing for aneuploidy (PGT-A) by comprehensive chromosome screening (CCS) of the first and second polar body to select embryos for transfer increase the likelihood of a live birth within 1 year in advanced maternal age women aged 36-40 years planning an ICSI cycle, compared to ICSI without chromosome analysis? SUMMARY ANSWER: PGT-A by CCS in the first and second polar body to select euploid embryos for transfer does not substantially increase the live birth rate in women aged 36-40 years. WHAT IS KNOWN ALREADY: PGT-A has been used widely to select embryos for transfer in ICSI treatment, with the aim of improving treatment effectiveness. Whether PGT-A improves ICSI outcomes and is beneficial to the patients has remained controversial. STUDY DESIGN, SIZE, DURATION: This is a multinational, multicentre, pragmatic, randomized clinical trial with intention-to-treat analysis. Of 396 women enroled between June 2012 and December 2016, 205 were allocated to CCS of the first and second polar body (study group) as part of their ICSI treatment cycle and 191 were allocated to ICSI treatment without chromosome screening (control group). Block randomization was performed stratified for centre and age group. Participants and clinicians were blinded at the time of enrolment until the day after intervention. PARTICIPANTS/MATERIALS, SETTING, METHODS: Infertile couples in which the female partner was 36-40 years old and who were scheduled to undergo ICSI treatment were eligible. In those assigned to PGT-A, array comparative genomic hybridization (aCGH) analysis of the first and second polar bodies of the fertilized oocytes was performed using the 24sure array of Illumina. If in the first treatment cycle all oocytes were aneuploid, a second treatment with PB array CGH was offered. Participants in the control arm were planned for ICSI without PGT-A. Main exclusion criteria were three or more previous unsuccessful IVF or ICSI cycles, three or more clinical miscarriages, poor response or low ovarian reserve. The primary outcome was the cumulative live birth rate after fresh or frozen embryo transfer recorded over 1 year after the start of the intervention. MAIN RESULTS AND THE ROLE OF CHANCE: Of the 205 participants in the chromosome screening group, 50 (24%) had a live birth with intervention within 1 year, compared to 45 of the 191 in the group without intervention (24%), a difference of 0.83% (95% CI: -7.60 to 9.18%). There were significantly fewer participants in the chromosome screening group with a transfer (relative risk (RR) = 0.81; 95% CI: 0.74-0.89) and fewer with a miscarriage (RR = 0.48; 95% CI: 0.26-0.90). LIMITATIONS, REASONS FOR CAUTION: The targeted sample size was not reached because of suboptimal recruitment; however, the included sample allowed a 90% power to detect the targeted increase. Cumulative outcome data were limited to 1 year. Only 11 patients out of 32 with exclusively aneuploid results underwent a second treatment cycle in the chromosome screening group. WIDER IMPLICATIONS OF THE FINDINGS: The observation that the similarity in birth rates was achieved with fewer transfers, less cryopreservation and fewer miscarriages points to a clinical benefit of PGT-A, and this form of embryo selection may, therefore, be considered to minimize the number of interventions while producing comparable outcomes. Whether these benefits outweigh drawbacks such as the cost for the patient, the higher workload for the IVF lab and the potential effect on the children born after prolonged culture and/or cryopreservation remains to be shown. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the European Society of Human Reproduction and Embryology. Illumina provided microarrays and other consumables necessary for aCGH testing of polar bodies. M.B.'s institution (UZBrussel) has received educational grants from IBSA, Ferring, Organon, Schering-Plough, Merck and Merck Belgium. M.B. has received consultancy and speakers' fees from Organon, Serono Symposia and Merck. G.G. has received personal fees and non-financial support from MSD, Ferring, Merck-Serono, Finox, TEVA, IBSA, Glycotope, Abbott and Gedeon-Richter as well as personal fees from VitroLife, NMC Healthcare, ReprodWissen, BioSilu and ZIVA. W.V., C.S., P.M.B., V.G., G.A., M.D., T.E.G., L.G., G.Ka., G.Ko., J.L., M.C.M., M.P., A.S., M.T., K.V., J.G. and K.S. declare no conflict of interest. TRIAL REGISTRATION NUMBER: NCT01532284. TRIAL REGISTRATION DATE: 7 February 2012. DATE OF FIRST PATIENT'S ENROLMENT: 25 June 2012.


Asunto(s)
Aneuploidia , Hibridación Genómica Comparativa/métodos , Transferencia de Embrión/estadística & datos numéricos , Cuerpos Polares , Adulto , Tasa de Natalidad , Método Doble Ciego , Transferencia de Embrión/métodos , Femenino , Humanos , Infertilidad/terapia , Análisis de Intención de Tratar , Nacimiento Vivo/epidemiología , Embarazo , Factores de Riesgo , Inyecciones de Esperma Intracitoplasmáticas/métodos , Inyecciones de Esperma Intracitoplasmáticas/estadística & datos numéricos
20.
J Inherit Metab Dis ; 41(6): 1259-1265, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30066229

RESUMEN

Preliminary data suggest a positive effect of taliglucerase alfa on the bone marrow infiltration of Gaucher cells. In this investigator-initiated study, we report the impact of taliglucerase alfa on the bone marrow fat fraction (FF) in 26 patients assessed by quantitative chemical shift imaging (QCSI). Of 15 treatment-naïve patients (median age 48 [range 24-68] years), eight had baseline FF ≤ 0.3, six of those with a FF ≤ 0.23 ('bone at risk'). All significantly improved from a median baseline FF of 0.24 (0.15-0.32) to 1st year FF of 0.37 (0.25-0.54) and 2nd year FF of 0.42 (0.27-0.59) (p = 0.01). Among the 11 'switch-over' patients (median age 42 [range 33-69] years; median imiglucerase exposure 8 [range 1-17] years), eight had baseline FF ≤ 0.3, five of those with FF < 0.23. All, but one, significantly improved from a median baseline FF of 0.17 (0.08-0.28) to 1st year FF of 0.3 (0.05-0.34) and 2nd year FF of 0.34 (0.08-0.44) (p = 0.03). Two elderly female patients (age 43 and 58 years, with 17 years imiglucerase exposure) who remained at the same enzyme replacement therapy dose, increased from baseline FF of 0.13 and 0.19 to 0.26 at 1 year. Although the number of observations is small, we hypothesize that switching to taliglucerase may result in an improved bone marrow response. A larger study is needed to assess the early benefit of taliglucerase alfa in adult patients with type 1 Gaucher disease on the bone marrow compartment.


Asunto(s)
Médula Ósea/metabolismo , Terapia de Reemplazo Enzimático , Enfermedad de Gaucher/terapia , Glucosilceramidasa/uso terapéutico , Tejido Adiposo/metabolismo , Adulto , Anciano , Médula Ósea/efectos de los fármacos , Femenino , Glucosilceramidasa/inmunología , Humanos , Israel , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...